Article 4213

Title of the article

A NONLINEAR TRANSMISSION EIGENVALUE PROBLEM THAT DESCRIBES ELECTROMAGNETIC TE WAVE
PROPAGATION IN A PLANE INHOMOGENEOUS NONLINEAR DIELECTRIC WAVEGUIDE 

Authors

Valovik Dmitriy Viktorovich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (Penza, 40 Krasnaya str.), dvalovik@mail.ru
Marennikova Ekaterina Alekseevna, Postgraduate student, Penza State University (Penza, 40 Krasnaya str.), mmm@pnzgu.ru
Smirnov Yuriy Gennad'evich, Doctor of physical and mathematical sciences, professor, head of sub-department of mathematics and supercomputer modeling, Penza State University (Penza, 40 Krasnaya str.), mmm@pnzgu.ru 

Index UDK

517.927, 517.968, 519.6 

Abstract

Objective of the work is to study the mathematical model of surface electromagnetic TE wave propagation in a plane inhomogeneous dielectric waveguide filled with Kerr medium. Material and methods: the physical problem is reduced to a nonlinear integral equation with Green’s function as the kernel. The existence of solutions to the integral equation is proved with the help of the contracting mapping method. For numerical solutions two approaches are suggested: an iteration method (its convergence is proved); the method of Cauchy problem (a variant of the shooting method). Results: the existence of dispersion equation’s roots (propagation constants
of the waveguide) is proved. The authors obtain conditions suitable for k waves propagation. The regions of localization of the propagation constants are found. Conclusions: the results show that there is a nonlinear waveguiding regime for TE waves propagating in a plane inhomogeneous nonlinear waveguide. 

Key words

Maxwell’s equations, inhomogeneous waveguide, boundary eigenvalue problem, nonlinear permittivity. 

Download PDF
References

1. Stretton Dzh. A. Teoriya elektromagnetizma [Electromagnetic theory]. Moscow ; Leningrad: GITTL, 1948.
2. Eleonskii P. N., Oganes'yants L. G., Silin V. P. Soviet Physics JETP. 1972, vol. 35, no. 1, pp. 44–47.
3. Valovik D. V., Smirnov Yu. G. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Calculus mathematics and mathematical physics journal]. 2008, vol. 48, no. 12, pp. 2186–2194.
4. Valovik D. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Calculus mathematics and mathematical physics journal]. 2011, vol. 51, no. 9, pp. 1729–1739.
5. Valovik D.V.Radiotekhnika i elektronika [Radio engineering and electronics].2011,vol.56,no.11, pp.1329–1335.
6. Valovik D. V., Smirnov Yu. G. Radiotekhnika i elektronika [Radio engineering and electronics]. 2011, vol. 56, no. 3, pp. 309–314.
7. Valovik D. V., Zarembo E. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Calculus mathematics and mathematical physics journal]. 2013, vol. 53, no. 1, pp. 74–89.
8. Valovik D. V. Rasprostranenie Radiotekhnika i elektronika [Calculus mathematics and mathematical physics journal]. 2011, vol. 56, no. 5, pp. 589–599.
9. Naymark M. A. Lineynye differentsial'nye operatory [Linear differential operators]. Moscow:Nauka,1969,528 p.
10. Stakgold I. Green`s Functions and Boundary Value Problems. Wiley, New York, 1979,638 p.
11. Smirnov Yu. G., Kupriyanova S. N. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Calculus mathematics and mathematical physics journal]. 2004, vol. 44, no. 10, pp. 1850–1860.
12. Smirnov Yu. G., Valovik D. V. Electromagnetic Wave Propagation in Nonlinear Layered Wave-guide Structures. Penza: PSU Press, 2011.
13. Trenogin V. A. Funktsional'nyy analiz [Functional analysis]. Moscow: Nauka, 1980, 496 p.
14. Lizorkin P. I. Kurs differentsial'nykh i integral'nykh uravneniy s do-polnitel'nymi glavami analiza [The course of differential and integral equations with additional chapters on analysis]. Moscow: Nauka, 1981, 384 p.
15. Schürmann H. W., Serov V. S., Shestopalov Yu. V. Phys. Rev. E. 1998, vol. 58, no. 1, pp. 1040–1050.
16. Zil'bergleyt A. S., Kopilevich Yu. I. Spektral'naya teoriya regulyarnykh volnovodov [Spectral theory of lineral waveguides]. Leningrad: FTI, 1983, 302 p.
17. Akhmediev N. N., Ankevich A. Solitony. Nelineynye impul'sy i puchki [Solitons. Nonlinear impulses and beams]. Moscow: Fizmatlit, 2003, 299 p.

 

Дата создания: 27.01.2014 11:02
Дата обновления: 21.07.2014 08:38